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Abstract. An explicit model for the proton structure function is suggested, interpolating between low-Q2

vector meson dominance and Regge behavior, on the one hand, and the high-Q2 solution of the Gribov-
Lipatov-Altarelli-Parisi evolution equation, on the other hand. The model is fitted to the experimental
data in a wide range of the kinematical variables with emphasis on the low-x HERA data. The boundaries,
transition region and interface between various regimes are quantified.

1 Introduction

In deep inelastic scattering the dynamics of low- and high
virtualities, Q2 is usually treated in a disconnected way,
by using different methods. The structure function (SF)
F2(x, Q2) at small Q2 (and small x, where x is the frac-
tion of the momentum carried by a parton) is known to
be Regge-behaved and satisfying vector meson dominance
(VMD) with the limit F2(x, Q2) −→

Q2→0
0, imposed by gauge

invariance. At large Q2, on the other hand, F2(x, Q2)
obeys the solutions of the Gribov-Lipatov-Altarelli-Parisi
(GLAP) evolution equation [1].

One important problem remains open: where do these
two regimes meet and how do they interpolate? In the
present paper we seek answers to these questions.

For definiteness, we deal with the proton SF to be de-
noted F2. Our emphasis is on the small x region, domi-
nated by gluodynamics. The valence quark contribution
will be added at large-x in a phenomenological way to
make the fits complete.

The forthcoming presentation has also an important
aspect relevant to quantum chromodynamics (QCD),
namely in clarifying the range of applicability and the in-
terface between the GLAP and the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) [2] evolutions. While the GLAP
equation describes the evolution of the SF in Q2 starting
from a given x− dependence, the BFKL evolution means
variation of the SF in x for fixed Q2, both implying large
enough Q2 for the perturbative expansion to be valid.
QCD leaves flexible the relevant limits and boundaries.
Moreover, the onset of their asymptotic solutions depends
on details of the calculations. In this paper we try to make
some of these limits explicit and quantitative.

HERA is an ideal tool to verify the above theories.
The relevant data extend over a wide range of Q2 – a
fruitful test field for the GLAP evolution, on one hand,
and to low enough x, where the SF is dominated by a
Pomeron contribution, expected to be described by the
BFKL evolution (see below).

For the parametrization F2 ≈ xλ, the “effective power”
λ rises on average from about 0.15 around Q2 ≈ 1 GeV2

to 0.4 at Q2 ≈ 1000 GeV2 [3]. This exponent cannot be
identified with the intercept – 1 of a simple Pomeron pole
since by factorization it cannot depend on the virtual-
ity of the external particle. A Q2− dependent intercept,
compatible with the data, may arise from unitarization.
However such a model [4] leaves much flexibility since nei-
ther the input (Born) value of the intercept is known for
sure, nor a reliable unitarization procedure exists (for a
recent attempt see however [5]). Moreover, claims exist
that the HERA data are compatible with a softer, namely
logarithmic behavior in x (obeying the Froissart bound)
with a factorized Q2 dependence [6, 7].

On the other hand the Q2, or GLAP, evolution in the
“leading-log” approximation, has the following asymptotic
solution for the singlet SF, valid for low x and high Q2 [1,
8]

F2 ≈ exp
(√

γ1`n(1/x) `n`nQ2
)

, (1.1)

with γ1 = 16Nc

(11−2f/3) . For 4 flavours (f = 4) and three
colours (Nc = 3), one gets γ1 = 5.76.

The asymptotic solution of the BFKL evolution equa-
tion is the so-called “Lipatov Pomeron” [2]. The numerical
value of its intercept was calculated [2] to be between 1.3
and 1.5. This large value gave rise to speculations that the
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“Lipatov Pomeron” has been seen at HERA, where the
large – Q2 data seemed to be compatible with a steep rise
≈ x−0.4 (for an alternative interpretation of the relation
between the “Lipatov Pomeron” and the “HERA effect”
see for example [9]). However, according to the results of a
recent calculation [10], the sub-asymptotic corrections to
the Pomeron pole in perturbative QCD are larger than ex-
pected and they contribute distructively to the intercept,
thus lowering its value and making it compatible with the
intercept of the soft Pomeron1.

The technical difficulties of the purely perturbative cal-
culations are aggravated by the unpredictable non-pertur-
bative contributions, both in the BFKL and GLAP evo-
lutions, thus reducing the precision of the theoretical cal-
culations and their predictive power. All these difficulties
are redoubled by the unknown unitarity corrections to be
included in the final result.

Attempts to extrapolate the Pomeron-dominated
“soft” SF by applying GLAP evolution towards higher
Q2 are known in the literature (see e.g. [4, 11]). They dif-
fer in some details, namely in the choice of the model for
the Pomeron, its range, i.e. the value of Q2 from which
the evolution starts, and in the details of the evaluation
(explicit in [11] or numerical in [4a]) of this evolution. We
are not aware of any results of an “inverse extrapolation”.

The situation has been recently summarized [3] in a
figure (see also Sect. 4) showing the x- and Q2-dependence
of the derivative dF2/d`nQ2. The philosophy behind this
figure is that the turning point (located at Q2 ∼ 2 GeV2)
divides “soft” and “hard” dynamics. As shown in [3], one
of the most successful approaches to the GLAP evolu-
tion, that by [12], fails to follow the soft dynamics. A
phenomenological model (called “ALLM”) for the struc-
ture function and cross-section, applicable in a wide range
of their kinematical variables is well known in the litera-
ture [13]. Recently [14] it was updated to fit the data and
shown to exhibit both – the rising and falling – parts of
the derivative versus x (or Q2). We will comment more
the behavior of this derivative in Sect. 4.

Below we pursue a pragmatic approach to the prob-
lem. We seek for an interpolation formula between the
known asymptotic solutions imposed as boundary condi-
tions. Clearly, such an interpolation is not unique, but it
seems to be among the simplest. Moreover, it fits the data
remarkably well, thus indicating that the interpolation is
not far from reality.

2 Formalism

2.1 Kinematics

We use the standard kinematic variables to describe deep
inelastic scattering:

e(k) + p(P ) → e(k′) + X , (2.1)

1 One of us (F.P.) thanks B.I. Ermolaev for a discussion of
this issue

where k, k′, P are the four-momenta of the incident elec-
tron, scattered electron and incident proton. Q2 is the
negative squared four-momentum transfer carried by the
virtual exchanged boson (photon)

Q2 = −q2 = −(k − k′)2 , (2.2)

x is the Björken variable

x =
Q2

2P.q
, (2.3)

y (the inelasticity parameter) describes the energy transfer
to the final hadronic state

y =
q.P

k.P
, (2.4)

W is the center of mass energy of the γ∗p system

W 2 = Q2 1 − x

x
+ m2

p , (2.5)

with mp, being the proton mass. Note that only two of
these variables are independent and that, at high energies
for a virtual photon with x � 1, one has W 2 ∼ Q2

x .

2.2 Structure function for low x and all Q2

Following the strategy outlined in the Introduction, we
suggest the following ansatz for the small-x singlet part
(labelled by the upper index S, 0) of the proton structure
function, interpolating between the soft (VMD, Pomeron)
and hard (GLAP evolution) regimes:

F
(S,0)
2 (x, Q2) = A

(
Q2

Q2 + a

)1+∆̃(Q2)

e∆(x,Q2) , (2.6)

with the “effective power”

∆̃(Q2) = ε + γ1`n

(
1 + γ2`n

[
1 +

Q2

Q2
0

])
, (2.7)

and

∆(x, Q2) =
(
∆̃(Q2)`n

x0

x

)f(Q2)
, (2.8)

where

f(Q2) =
1
2

(
1 + e−Q2/Q2

1

)
. (2.9)

At small and moderate values of Q2 (to be specified
from the fits, see below), the exponent ∆̃(Q2) (2.7) may
be interpreted as a Q2-dependent “effective Pomeron in-
tercept”.

The function f(Q2) has been introduced in order to
provide for the transition from the Regge behavior, where
f(Q2) = 1, to the asymptotic solution of the GLAP evo-
lution equation, where f(Q2) = 1/2.
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By construction, the model has the following asymp-
totic limits:
a) Large Q2, fixed x:

F
(S,0)
2 (x, Q2 → ∞) → A exp

(√
γ1`n`n

Q2

Q2
0

`n
x0

x

)
,

(2.10)

which is the asymptotic solution of the GLAP evolution
equation (see Sect. 1).
b) Low Q2, fixed x:

F
(S,0)
2 (x, Q2 → 0) → Ae∆(x,Q2→0)

(
Q2

a

)1+∆̃(Q2→0)

(2.11)

with

∆̃(Q2 → 0) → ε + γ1γ2

(
Q2

Q2
0

)
→ ε , (2.12)

f(Q2 → 0) → 1 , (2.13)

whence

F
(S,0)
2 (x, Q2 → 0) → A

(x0

x

)ε
(

Q2

a

)1+ε

∝ (Q2)1+ε → 0 , (2.14)

as required by gauge invariance.
c) Low x, fixed Q2:

F
(S,0)
2 (x → 0, Q2) = A

(
Q2

Q2 + a

)1+∆̃(Q2)

×e∆(x→0,Q2) . (2.15)

If

f(Q2) ∼ 1 , (2.16)

i.e. when Q2 � Q2
1, we get the standard (Pomeron-dom-

inated) Regge behavior (with a Q2 dependence in the ef-
fective Pomeron intercept)

F
(S,0)
2 (x → 0, Q2) → A

(
Q2

Q2 + a

)1+∆̃(Q2) (x0

x

)∆̃(Q2)

∝ x−∆̃(Q2) . (2.17)

2.3 Extension to large x

We now complete our model by including the “large-x”
domain and for all kinematically allowed Q2. Since we are
essentially concerned with the small-x dynamics (transi-
tion between the GLAP and BFKL evolution), the present
extension serves merely to have as good fits as possible
with a minimal number of extra parameters. To this end

we rely on the existing phenomenological models, in par-
ticular on that of [4a] (CKMT), however we do not take
into account the QCD evolution for Q2 > 5 GeV2 and the
addition of a higher twist term.

Following CKMT, we multiply the singlet part of the
above structure function F

(S,0)
2 (defined in (2.6–2.9)) by

a standard large-x factor to get

F
(S)
2 (x, Q2) = F

(S,0)
2 (x, Q2)(1 − x)n(Q2)+4 , (2.18)

with

n(Q2) =
3
2

(
1 +

Q2

Q2 + c

)
. (2.19)

Next we add the nonsinglet (NS) part of the structure
function, also borrowed from CKMT

F
(NS)
2 (x, Q2) = B(1 − x)n(Q2)x1−αr

(
Q2

Q2 + b

)αr

. (2.20)

The free parameters that appear with this addendum are
c for the Pomeron and B, b, αr for the Reggeon. The final
and complete expression for the proton structure function
becomes

F2(x, Q2) = F
(S)
2 (x, Q2) + F

(NS)
2 (x, Q2) . (2.21)

2.4 Total cross-section for (γ∗, p) scattering

Directly connected to the proton SF is the total cross-
section for (γ∗, p) scattering, as a function of the center
of mass energy W and for a given virtuality Q2 of the
exchanged photon

σγ∗,p
tot (W, Q2) =

4π2α

Q2(1 − x)
Q2 + 4m2

px
2

Q2 F2(x, Q2) , (2.22)

with x given by (2.5). In particular, the limiting case of
real photons gives

σγ,p
tot (W ) = 4π2α

[
F2(x, Q2)

Q2

]
Q2→0

= 4π2α

(
A a−1−ε xε

0 W ′2ε

+B b−αr W ′2(αr−1)
)

, (2.23)

with W ′2 = W 2 − m2
p (' W 2 only for high W ).

3 Fitting to the data

The experimental data sets from “H1” [15,16], for the pro-
ton structure function F2(x, Q2) were used as well as data
[17] on the total cross-section for real photons σ

(γ,p)
tot (W ),

within the kinematical ranges listed in Table 1.
Among a total of 12 parameters, 8 are free, the remain-

ing 4 being fixed in the following way:
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Table 1. Set of data used in our fit with the parameters listed in Table 2. For
each subset are shown the kinematical ranges and the χ2- contributions

Data set kinematical range Nb. of points χ2

σ
(γ,p)
tot [17] W > 3 GeV 2 73 73

F2, H1 [15] Q2 = 1.5 − 5000 GeV 2 193 110

x = 3.10−5 − 0.23

F2, H1 [16] Q2 = 0.35 − 3.5 GeV 2 44 20
x = 6.10−6 − 1.3 10−3

Total 310 /dof 0.67

1. ε = 0.08 is a “canonical” value [18], leaving little room
for variations (although, in principle, it can be also
subject to the fitting procedure);

2. when left free in the fitting procedure, x0 takes a value
slightly beyond 1. Thus, we can safely fix x0 = 1 with-
out practically affecting the resulting fits;

3. we have set c = 3.5489 GeV2 relying on CKMT. This
parameter is responsible for the large-x and small-Q2

region, outside the domain of our present interest;
4. as argued above, we may estimate from QCD the pa-

rameter γ1 = 16Nc/(11 − 2f/3) with four flavours
(f = 4) and three colors (Nc = 3), it equals 5.76. It
corresponds to the asymptotic regime (when Q2 → ∞,
or f(Q2) → 1/2)), far away from the region of the
fits, where f = 1 is more appropriate, hence the value
γ1 =

√
5.76 = 2.4 is more appropriate in the domain

under consideration. Remarkably, this value comes also
independently from the fits if γ1 is let free.

To compare with, the CKMT model [4a] depends on
8 adjustable parameters in the “soft” region, to be com-
pleted by QCD evolution at higher values of Q2, and with
a higher twist term added. On the other hand, the proton
structure function and (γ∗, p) cross section in the ALLM
model [13,14] are given explicitly in the whole range of the
kinematical variables, and the fits to all existing data are
very good with a total of 23 adjustable parameters.

When limiting the fitted data to the “H1” structure
function only [15,16] with x < 0.1 (all Q2), the singlet con-
tribution alone, as approximated in (2.6–2.9), gives a very
good fit (χ2

d.o.f ∼ 0.59). We mention that this preliminary
(unreported) result is obtained with a very economical set
of 8 parameters (5 free).

We do not pretend to have a perfect reproduction of all
existing data with such a naive parametrization and with
such a restricted set of fitted data, however our complete
model gives very good fits in the ranges in x, Q2 and W
covered by measurement with the data selections settled
above. To be specific, we find χ2

d.o.f ∼ 0.67. We show the
contributions to the χ2 of the data sets we used in Table 1,
the numerical values for the 12 parameters (8 free) are
presented in Table 2.

The results of our fits for the structure function versus
x over a large region of fixed Q2 are shown in Figs. 1–
2. The total cross section for the (γ∗, p) process is dis-

Table 2. Parameters used in our fit (see the text)

A 0.1470
a (GeV)2 0.2607

γ2 0.02000
Q2

0 (GeV)2 0.1675
Q2

1 (GeV)2 1174.
B 0.7575

b (GeV)2 0.4278
αr 0.5241

x0 1.0 (fixed)
ε 0.08 (fixed [18])
γ1 2.4(fixed QCD)

c (GeV)2 3.549 (fixed [4a])

played in Fig. 3 versus W , for intermediate and low virtu-
alities allowing a visualization of the fitted photoproduc-
tion cross-section at Q2 = 0, enlarged in Fig. 4. A compari-
son to available (fitted and non-fitted) recent SF data from
“H1” [15, 16, 19], “ZEUS” [20, 21], “E665” [22], “NMC”
[23], SLAC [24], “BCDMS” [25] and γ, p cross-section data
[17] is shown in the figures as well as a comparison with
the ALLM model predictions, taken as a standard. For
comparing these observables with predictions from other
Regge and QCD inspired models [12, 26–29], see [3].

4 Discussion

4.1 ∂F2
∂(`nQ2) as a function of x and Q2

The derivative of the SF with respect to `nQ2

BQ(x, Q2) =
∂F2(x, Q2)
∂(`nQ2)

(Q−slope for brevity) measures the amount of the scaling
violation and eventually shows the transition from soft to
hard dynamics. This derivative depends on two variables
(x and Q2). It was recently calculated from the HERA
data [3]; in Figs. 5, 6a we have quoted the correspond-
ing results. In those calculations the variables x and Q2
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Fig. 1. Proton structure function F2(x, Q2) as a function of x
at various values of fixed Q2. The shown data (fitted and non
fitted) are from [15, 16 ,19–23], the error bars represent the
statistical and systematic errors added in quadrature, the solid
curves are the results of our complete parametrization fitted
to the proton structure function [15, 16] and to the total cross-
sections of the (γ, p) process [17] (see also Table 1). Predictions
from updated ALLM model [14] are reported in dashed line
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Fig. 2. Proton structure function F2(x, Q2) as a function of x
at various low Q2 values. See also Fig. 1

Fig. 3. Total cross-section of the reaction (γ∗, p) as a function
of W , center of mass energy, for intermediate and low Q2 val-
ues. A factor 2k−1 is omitted for each curve (k is the number
of the curve starting from the top). See also Fig. 1

Fig. 4. Limiting case to real photon of the total cross-section
σ

(γ,p)
tot as a function of W 2, squared center of mass energy. See

also Figs. 1, 3
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Fig. 5. Two-dimensional projection of the three dimensional
Q−slope of the proton structure function. The surface repre-
sents BQ = ∂F2(x,Q2)

∂(ln Q2) as a function of x and Q2 as following
from the present parametrization with its line of maximum
(open squares). The crosses are the points calculated from the
HERA data in [3], located on an experimental (x, Q2) path

are strongly correlated, it is implied that, for a limited
acceptance (as it is the case in the HERA experiments)
and for a fixed energy, one always has a limited band in
Q2 at any given x, with average Q2 becoming smaller for
smaller x. From a theoretical point of view, however, x
and Q2 are quite independent and one is not restricted to
follow a particular path on the surface representing the
Q−slope. Therefore we plot in Fig. 5 the Q−slope calcu-
lated from our model (2.21) with the parameters fitted
to the data, in one more dimension than usual, i.e. as a
function of the two independent variables-x and Q2. The
two slopes on the hill of ∂F2

∂(`nQ2) in Fig. 5 correspond to
soft and hard dynamics separated by a “division line”.
The division line is only symbolic since there is a wide
interface region where both dynamics mix, each tending
to dominate on the lower side of its own slope. Remark-
ably, the division line – or line of maxima of this surface
– turns out to be almost Q2-independent (∼ 40 GeV2)
at low x < 3. 10−3; a smoothly increasing Q2 is obtained
when x increases (Q2 ∼ 110 GeV2 when x ∼ 0.1). The
difference with the maximum at 2 GeV2 exhibited in [3]
is due to the special experimental set of (x, Q2) chosen in
[3], discussed above and shown in Fig. 5.

Notice that the Q−slope becomes negative in a region
between Q2 ∼ 200 and ∼ 5000 GeV2, at small x ; this re-
gion tends to narrow when x increases beyond x = 0.0005
and finally disappears when x exceeds 0.05.

Similar results are exposed on families of 2-dimensional
figures as well (Figs. 6a, 6b) showing the x- (and Q2-
)dependence of the Q−slope when the other variable takes
fixed values. Figure 6a shows that our predictions are quite
in agreement with the data from [3]; also shown is the
failure of the approach of the GLAP evolution equation
[12] to follow the low x (Q2) dynamics as reported in [3].
Fig. 6b shows the variation with x of the region with neg-
ative Q−slope. Notice that the rising part to large extent
is a threshold effect due to the increasing phase space (see
[30]).

Fig. 6a. Derivative of the proton structure function BQ =
∂F2(x,Q2)
∂(ln Q2) (Q−slope) as a function of x, for correlated Q2 values

as indicated. The round dots are the HERA data, the open
squares the results from [12] taken from [3] and the hollow
triangles are the results of the present parametrization

Fig. 6b. Same derivative as in Fig. 6a (Q−slope) as a function
of Q2, for some x values as indicated. The solid curves are the
results of the present parametrization
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Fig. 7. Derivative of the logarithm of the proton structure
function Bx = ∂`nF2(x,Q2)

∂(`n(1/x)) (x−slope) versus Q2 for some x

values as indicated. Also plotted on the same (left) scale is the
effective exponent ∆eff = ∆̃ (2.7), representing the Pomeron
intercept −1 only when f(Q2) ≈ 1. The function f(Q2) (2.9) is
also shown as a dashed line (right scale); the transition between
the Regge behavior (f = 1.) and the GLAP evolution (f =
0.5) occurs within an estimated band located between vertical
landmarks (see the text)

4.2 ∂`nF2
∂(`n(1/x)) as a function of Q2 for some x values

The derivative of the logarithm of the SF with respect to
`n1/x

Bx(x, Q2) =
∂`nF2(x, Q2)
∂(`n(1/x))

(x−slope for brevity), when measured in the Regge re-
gion, can be related (for low x) to the Pomeron intercept.
In Fig. 7 the Q2-dependence of this derivative is shown
for some low x-values, together with the “effective power”
∆̃ (2.7). On the same figure, the behavior of the function
f(Q2) (2.9) is also shown. In our model, Regge behavior
is equivalent to the condition that f(Q2) is close to unity.
This lower limit, marked on Fig. 7 (tentatively approxi-
mated within a 2% accuracy for the function f(Q2)), is
located near 40 GeV2. Until this landmark, the effective
power ∆̃ indeed remains very close to ∂`nF2

∂(`n(1/x)) , beyond

Regge behavior is not valid (since f 6= 1) and ∆̃ cannot be
considered as the effective slope any more. On the other
hand, ∂`nF2

∂(`n(1/x)) turns down as Q2 increases, approaching
its “initial value” of ≈ 0.1 at largest Q2 and coming closer
to the unitarity bound. Notably, at large Q2 the derivative
gets smaller as x decreases, contrary to the general belief
that dynamics becomes harder for smaller x, but in accord

with an observation made in [31]. Care should be however
taken in interpreting the “hardness” of the effective power
outside the Regge region.

According to our model, the change from the BFKL
(Pomeron) to the GLAP evolution occurs when f(Q2)
changes from 1 to 1/2. This variation happens in a band
in Q2, namely between ∼ 40 GeV2 and ∼ 4000 GeV2.

Let us remind once more that our interpolating for-
mula (2.6) between Regge behavior and GLAP evolution
was suggested for small x( x ≤ 0.1). The larger x part
was introduced for completeness and better fits only, with-
out any care of its correspondence to the GLAP evolution
equation. It does not affect however the kinematical do-
main of the present and future HERA measurements and
Pomeron dominance (BFKL evolution) we are interested
in.

4.3 Concluding remarks

Once the “boundary conditions” (at low and high Q2) are
satisfied, the interpolation may be considered as an ap-
proximate solution valid for all Q2. Clearly, our interpola-
tion is not unique. For example, the choice of f(Q2), satis-
fying the boundary conditions f(0) = 1 and f(∞) = 1/2,
may be different from ours. However, there is little free-
dom in the choice of the asymptotic forms, different from
those we have used, namely (2.10) and (2.17). The uti-
lization of a soft Pomeron input different from (2.17) is
credible. For example, a dipole Pomeron was shown [7, 11]
to have the required formal properties and to fit the data
at small and moderate Q2. Moreover, the dipole Pomeron
does not violate the Froissart bound, so it does not need
to be unitarized. Attempts [6, 7] to fit the high-Q2 HERA
data without a power in x, i.e. with logarithmic functions,
attributing the whole Q2 dependence to the (factorized)
“residue function”, are disputable. What is even more im-
portant from the point of view of the present interpolation,
a power in x must be introduced anyway to match the
high Q2 GLAP evolution solution (2.10). This discussion
brings us back to the interesting but complicated problem
of unitarity.

As it is well known, the power increase of the total
cross sections, or of the SF towards small x cannot con-
tinue indefinitely. It will be slowed down by unitarity, or
shadowing corrections, whose calculation or even recipe –
especially for high virtualities Q2 – is a delicate and com-
plicated problem, beyond the scope of the present paper.
Here we only mention, that once the model fits the data,
it cannot be far from the “unitarized” one in the fitted
range, since the data “obey” unitarity.

To conclude:

1. Strong interaction dynamics is continuous, hence the
relevant solutions should be described by continuous
solutions as well;

2. The formal solutions of the GLAP equations, even in
their most advanced forms, ultimately contain some
freedom (e.g. “higher twists”, or non-perturbative cor-
rections) or approximations;
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3. However so elaborated or “precise” the existing solu-
tions are, unitarity corrections will modify their form
anyway;

The above remarks justify the use for practical pur-
poses of an explicit solution that satisfies the formal the-
oretical requirements and yet fits the data. Its simplicity
and flexibility make possible its further improvement and
its use as a laboratory in studying complicated and yet
little understood transition phenomena.
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